Второй закон термодинамика формулы

Второй закон термодинамика формулы

Второй закон термодинамики можно сформулировать без уточнения вида процесса. При этом формулировка будет эквивалентна вышеизложенным: вблизи каждого равновесного состояния любой термодинамической системы существуют другие равновесные состояния, недостижимые из первого адиабатическим путем.

Второй закон термодинамики

1) Формулировка Кельвина: Невозможно создать круговой процесс, результатом которого станет исключительно превращение теплоты, которое получено от нагревателя, в работу. Из данной формулировки второго закона термодинамики делают вывод о невозможности создания вечного двигателя второго рода. Это означает, что периодически действующая тепловая машина должна иметь нагреватель, рабочее тело и холодильник. При этом КПД идеальной тепловой машины не может быть больше, чем КПД цикла Карно:

Школьная Энциклопедия

Первая стадия А→Б изотермическая. Она проходит при одинаковой температуре нагревателя и рабочего тела ТН. Во время контакта количество теплоты Q H передаётся от нагревателя рабочему телу (газу в цилиндре). Газ изотермически расширяется и совершает механическую работу.

Второй закон термодинамики

Второй закон термодинамики можно объяснить на стандартном примере, который часто приводят школьникам. У нас есть два тела с различной температурой. Более нагретая субстанция будет отдавать свое тепло менее нагретой до тех пор, пока их температурные показатели не сравняются. В ходе данного процесса энтропия у первого, более теплого тела уменьшится на меньший показатель, нежели она увеличится у второго, более прохладного тела. В результате подобный самопроизвольный процесс создаст энтропию системы, показатель которой будет выше, чем суммарное значение энтропий двух тел в первоначальном положении. Иными словами, мера хаоса системы двух субстанций, полученная в результате обмена теплом, увеличилась.

Второй закон термодинамики

Необратимыми являются практически все процессы, происходящие в природе. Это связано с тем, что в любом реальном процессе часть энергии рассеивается за счет излучения, трения и т. д. Например, тепло, как известно, всегда переходит от более горячего тела к более холодному — это наиболее типичный пример необратимого процесса (хотя обратный переход не противоречит закону сохранения энергии).

Рекомендуем прочесть:  Транспорт для детей жд

Второй закон термодинамики

Термодинамика опирается на фундаментальные законы (начала), которые являются обобщением наблюдений над процессами, протекающими в природе независимо от конкретных свойств тел. Этим объясняется универсальность закономерностей и соотношений между физическими величинами, получаемых при термодинамических исследованиях.

Второй закон термодинамика формулы

Первый закон термодинамики, как уже сказано, характеризует процессы превращения энергии с к о л и ч е с т в е н н о й стороны. Второй закон термодинамики характеризует к а ч е с т в е н н у ю сторону этих процессов. Первый закон термодинамики дает все необходимое для составления энергетического баланса какого-либо процесса. Однако он не дает никаких указаний относительно возможности протекания того или иного процесса. Между тем далеко не все процессы реально осуществимы.

Второй закон термодинамика формулы

Самопроизвольные процессы делятся на обратимые и необратимые. Второй закон термодинамики называют законом направленности процесса в изолированной системе (закон роста S). Слово «энтропия» создано в 1865 г. Р. Ю. Э. Клаузиусом – «тропе» с греческого означает превращение. В 1909 г. профессор П. Ауербах назвал царицей всех функций внутреннюю энергию, а Sтенью этой царицы. Энтропия – мера неупорядоченности системы.

Основы теплотехники

Первый закон термодинамики представляет собой закон сохранения энергии применительно к термодинамическим процессам: энергия не исчезает в никуда и не возникает из ничего, а лишь переходит из одного вида в другой в эквивалентных количествах. Примером может послужить переход теплоты (тепловой энергии) в механическую энергию, и наоборот.

Общая формулировка второго закона термодинамики

Являясь следствием второго закона термодинамики, формула для КПД цикла Карно, естественно, отражает его содержание. Из нее видно, что теплоту горячего источника можно было бы полностью превратить в работу, т. е. получить КПД цикла, равный единице, лишь в случае, когда либо . Оба значения температур недостижимы. (Недостижимость абсолютного нуля температур следует из третьего начала термодинамики).

Рекомендуем прочесть:  Вселение в жилое помещение

Второй закон термодинамики

Представим себе, например, газ в резервуаре, помещенном в больший резервуар. Если открыть клапан меньшего резервуара, то газ через некоторое время заполнит больший резервуар таким образом, что его плотность выровняется. Согласно законам микроскопического мира, существует также и обратный процесс, когда газ из большего резервуара соберется в меньшую емкость. Но в макроскопическом мире такое никогда не реализуется.

Все формулы

Количество теплоты Q, полученной газом в процессе изотермического расширения, превращается в работу над внешними телами. При изотермическом сжатии работа внешних сил, произведенная над газом, превращается в тепло, которое передается окружающим телам. Наряду с изохорным, изобарным и изотермическим процессами в термодинамике часто рассматриваются процессы, протекающие в отсутствие теплообмена с окружающими телами.

Второе начало термодинамики

Знак равенства относится к обратимому процессу, знак неравенства – к необратимому. Последние две формулы – математическое выражение второго закона термодинамики. Таким образом, введение понятия «энтропия» позволило строго математически сформулировать второе начало термодинамики.

Второй закон термодинамики

Чем больше N1, тем больше вероятность данного макросостояния, т.е. тем большее время система будет находиться в этом состоянии. Эволюция системы происходит в направлении от маловероятных состояний к более вероятным. Т.к. механическое движение — это упорядоченное движение, а тепловое — хаотическое, то механическая энергия переходит в тепловую. При теплообмене состояние, в котором одно тело имеет более высокую температуру (молекулы имеют более высокую среднюю кинетическую энергию), менее вероятно, чем состояние, в котором температуры равны. Поэтому процесс теплообмена происходит в сторону выравнивания температур.

Формулировки второго закона термодинамики

Термодинамическим процессом называют переход системы из одного равновесного состояния в другое. Если система в результате совершения нескольких процессов приходит в первоначальное состояние, то говорят, что она совершила замкнутый процесс или цикл. Циклом Карно называется круговой цикл, состоящий из 2-х изотермических (протекающих при постоянной температуре) и из 2-х адиабатных процессов (протекающих без теплообмена с окружающей средой). Обратимый цикл Карно в p-v- и T-s- диаграммах показан на рис.1: 1-2 — обратимое адиабатное расширение при s1=сonst[4,c.14]. Температура уменьшается от Т1 до Т2.

Ссылка на основную публикацию