Всегда ли справедлив закон сохранения электрического заряда

Закон сохранения электрического заряда

3.Поле равномерно заряженной сферической поверхности. Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно с поверхностной плотностью +σ. Благодаря равномерному распределению заряда по поверхности поле, создаваемое им, обладает сферической симметрией. Поэтому линии напряженности направлены радиально). Выделим мысленно сферу радиуса r, имеющую общий центр с заряженной сферой. Если r>R, то внутрь поверхности попадает весь заряд Q, создающий рассматриваемое поле, и, по теореме Гаусса, 4πr 2 E = Q/εo, откуда

Закон сохранения электрического заряда

Одним из подтверждений закона сохранения электрического заряда служит строгое равенство (по абсолютной величине) электрических зарядов электрона и протона. Изучение движения атомов (молекул) и микроскопических тел в электрических полях подтверждает электронейтральность вещества и, соответственно, равенство зарядов электрона и протона (и электронейтральность ней­трона) с точностью до 10 -21 .

Закон сохранения электрического заряда

30.Электрическое поле — одна из составляющих электромагнитного поля; особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию назаряженные тела.Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный [1] пробный заряд, помещенный в данную точку поля, к величине этого заряда :

Закон сохранения электрического заряда

  1. Электризация тел при соприкосновении. В этом случае при тесном контакте небольшая часть электронов переходит с одного вещества, у которого связь с электроном относительно слаба, на другое вещество.
  2. Электризация тел при трении. При этом увеличивается площадь соприкосновения тел, что приводит к усилению электризации.
  3. Влияние. В основе влияния лежит явление электростатической индукции, то есть наведение электрического заряда в веществе, помещённом в постоянное электрическое поле.
  4. Электризация тел под действием света. В основе этого лежит фотоэлектрический эффект, или фотоэффект, когда под действием света из проводника могут вылетать электроны в окружающее пространство, в результате чего проводник заряжается.
Рекомендуем прочесть:  Есть ли льготы у ветеранов труда на антенну

Закон сохранения электрического заряда

Иначе: Два точечных заряда в вакууме действуют друг на друга с силами, которые пропорциональны произведению модулей этих зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды. Эти силы называются электростатическими (кулоновскими).

Всегда ли справедлив закон сохранения электрического заряда

Перемещение зарядов либо отсутствует, либо происходит так медленно, что возникающие при движении зарядов магнитные поля ничтожны. Сила взаимодействия между зарядами определяется только их взаимным расположением. Следовательно, энергия электростатического взаимодействия – потенциальная энергия.

Закон сохранения заряда

Известно, что все тела состоят из атомов. В свою очередь атом состоит из положительно заряженного ядра и электронов, которые вращаются вокруг него. Так как электроны имеют отрицательный заряд, а ядро положительный – то в целом атом является электрически нейтральным. При воздействии на него из вне, он может потерять один или несколько электронов и превратится в положительно заряженный ион. В случае, если атом (или молекула), присоединит к себе дополнительный электрон, то он превратится в отрицательный ион.

Всегда ли справедлив закон сохранения электрического заряда

Установим на демонстрационном столе два одинаковых электрометра. На стержне первого из укрепим металлический диск и поставим на него второй такой же диск с ручкой из изолятора. Между дисками поместим прослойку из сукна или другого материала, являющегося изолятором. Взявшись за ручку, совершим несколько движений верхним диском по прослойке и поднимем этот диск (рис. 125).

Закон сохранения электрических зарядов

Ученым известны физические процессы, в ходе которых из электромагнитного излу­чения образуются элементарные частицы. Типичный пример такого явления — обра­зование электрона и позитрона из γ-излу­чения, появляющегося при радиоактивных преобразованиях вещества. Многочислен­ные исследования однозначно доказали, что электрон, имеющий отрицательный заряд, всегда появляется в этих преобразованиях в паре с позитроном, имеющем положитель­ный заряд. Алгебраическая сумма зарядов электрона и позитрона равняется нулю. Электромагнитное излучение не имеет заря­да вообще. Таким образом,

Электрический заряд

Эта пропорциональность справедлива для гравитационного, электрического, магнитного действия, силы звука, света, радиации, распространяющихся от источника. Связано это, конечно, с тем, что площадь поверхности сферы распространения эффекта увеличивается пропорционально квадрату расстояния (см. рис. 4). Это будет выглядеть естественным, если вспомнить, что площадь сферы пропорциональна квадрату радиуса:

Рекомендуем прочесть:  Программа Кап Ремонтов В Москве

Закон сохранения электрического заряда

Еще в глубокой древности было известно, что янтарь, потертый о шерсть, притягивает легкие предметы. Английский врач Джильберт (конец XVI в.) назвал тела, способные после натирания притягивать легкие предметы, наэлектризованными. Сейчас мы гово­рим, что тела при этом приобретают электрические заряды. Несмотря на огромное разнообразие веществ в природе, существует только два типа электрических зарядов: заряды, подобные возникающим на стекле, потертом о кожу (их назвали положитель­ными), и заряды, подобные возникающим на эбоните, потертом о мех (их назвали отрицательными), одноименные заряды друг от друга отталкиваются, разноимен­ные — притягиваются.

Большая Энциклопедия Нефти и Газа

Закон сохранения электрического заряда : полный заряд замкнутой системы, т.е. алгебраическая сумма зарядов всех тел, постоянен. Это утверждение очевидно, если в системе не происходит превращений элементарных частиц. Но закон сохранения заряда имеет более фундаментальный характер — он выполняется в любых процессах рождения и уничтожения элементарных частиц.  [1]

Закон сохранения электрического заряда

У электрона есть антипод – позитрон. Массы частиц равны, а заряды противоположны, то есть алгебраическая сумма зарядов электрона и позитрона равна нулю. Взаимодействие электрона и позитрона приводит к аннигиляции: частицы исчезают, вместо них излучаются фотоны, не имеющие электрического заряда.

Всегда ли справедлив закон сохранения электрического заряда

Электрозаряд замкнутой системы сохраняется во временном промежутке и квантуется – изменяется порциями, которые кратны элементарному электрическому заряду. Если сказать по-другому, то алгебраическая сумма электрических зарядов тел и частиц, которые образуют электрически изолированную систему, будет неизменной при любых процессах, которые будут происходить в этой системе.

Всегда ли справедлив закон сохранения электрического заряда

В этой главе мы вернемся к полной системе из четырех уравнений Максвелла, которые мы приняли как отправной пункт в гл. 1 (вып. 5). До сих пор мы изучали уравнения Максвелла небольшими частями, кусочками; теперь пора уже прибавить последнюю часть и соединить их все воедино. Тогда мы будем иметь полное и точное описание электромагнитных полей, которые могут изменяться со временем произвольным образом.

Ссылка на основную публикацию